Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur Radiol ; 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2315558

ABSTRACT

PURPOSE: To study the association between ultrasound cortical thickness in reactive post-vaccination lymph nodes and the elicited humoral response and to evaluate the performance of cortical thickness as a predictor of vaccine effectiveness in patients with and without a previous history of COVID-19 infection. METHODS: A total of 156 healthy volunteers were recruited and followed prospectively after receiving two COVID-19 vaccination doses using different protocols. Within a week after receiving the second dose, an axillary ultrasound of the ipsilateral vaccinated arm was performed, and serial post-vaccination serologic tests (PVST) were collected. Maximum cortical thickness was chosen as a nodal feature to analyze association with humoral immunity. Total antibodies quantified during consecutive PVST in previously-infected patients and in coronavirus-naïve volunteers were compared (Mann-Whitney U test). The association between hyperplastic-reactive lymph nodes and effective humoral response was studied (odds ratio). The performance of cortical thickness in detecting vaccination effectiveness was evaluated (area under the ROC curve). RESULTS: Significantly higher values for total antibodies were observed in volunteers with a previous history of COVID-19 infection (p < 0.001). The odds ratio associating immunized coronavirus-naïve volunteers after 90 and 180 days of the second dose with a cortical thickness ≥ 3 mm was statistically significant (95% CI 1.52-6.97 and 95% CI 1.47-7.29, respectively). The best AUC result was obtained comparing antibody secretion of coronavirus-naïve volunteers at 180 days (0.738). CONCLUSIONS: Ultrasound cortical thickness of reactive lymph nodes in coronavirus-naïve patients may reflect antibody production and a long-term effective humoral response elicited by vaccination. CLINICAL RELEVANCE STATEMENT: In coronavirus-naïve patients, ultrasound cortical thickness of post-vaccination reactive lymphadenopathy shows a positive association with protective antibody titers against SARS-CoV-2, especially in the long term, providing new insights into previous publications. KEY POINTS: • Hyperplastic lymphadenopathy was frequently observed after COVID-19 vaccination. • Ultrasound cortical thickness of reactive post-vaccine lymph nodes may reflect a long-term effective humoral response in coronavirus-naïve patients.

2.
Sci Rep ; 12(1): 15606, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2062249

ABSTRACT

Scarce data have been reported about cellular immunity and longevity for different COVID-19 vaccination schedules. We carried out a prospective study enrolling 709 healthcare workers receiving two doses of mRNA-1273, BNT162b2, ChAdOx1, ChAdOx1/BNT162b2 or ChAdOx1 single dose to compare humoral and cellular immunogenicity across 9 months. Higher SARS-CoV-2 spike antibody levels were observed among individuals with hybrid immunity with one dose of any vaccine in comparison to uninfected individuals receiving two doses (mRNA-1273: 20,145 vs 4295 U/mL; BNT162b2: 15,659 vs 1959 U/mL; ChAdOx1: 5344 vs 2230 U/mL), except for ChAdOx1/BNT162b2 heterologous schedule (12,380 U/mL). Naturally infected individuals did not increase substantially the titers after the second dose and showed higher levels throughout the 9 months follow-up. The mean elimination half-life of antibodies among COVID-19 naïve participants was 98, 111, 60 and 36 days, for mRNA-1273, BNT162b2, ChAdOx1/ChAdOx1 and ChAdOx1/BNT162b2, respectively. Cellular immunity was preserved in 96%, 98%, 88% and 92% of uninfected individuals who received mRNA-1273, BNT162b2, ChAdOx1/ChAdOx1 and ChAdOx1/BNT162b2 after 6/9 months. Individuals with specific T cells showed robust long lasting protection, especially when m-RNA based vaccines are inoculated. These data may influence the validity of the vaccination passport and the need for booster vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Hospitals, University , Humans , Immunity, Cellular , Prospective Studies , RNA , SARS-CoV-2 , Spain , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL